MINISTRY OF EDUCATION MALAYSIA

Integrated Curriculum for Secondary Schools

Curriculum Specifications

MATHEMATICS

Form 3

Curriculum Development Centre
Ministry of Education Malaysia
2003

Integrated Curriculum for Secondary Schools

Curriculum Specifications

MATHEMATICS FORM 3

Copyright © 2003 Curriculum Development Centre
Ministry of Education Malaysia
Persiaran Duta
50604 Kuala Lumpur

First published 2003

Copyright reserved. Except for use in a review, the reproduction or utilization of this work in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, and recording is forbidden without prior written permission from the Director of the Curriculum Development Centre, Ministry of Education Malaysia.

CONTENTS

Page
RUKUNEGARA v
NATIONAL PHILOSOPHY OF EDUCATION vii
PREFACE ix
INTRODUCTION 1
LINES AND ANGLES II 10
POLYGONS II 12
CIRCLES II 15
STATISTICS II 19
INDICES 21
ALGEBRAIC EXPRESSIONS III 27
ALGEBRAIC FORMULAE 32
SOLID GEOMETRY III 34
SCALE DRAWINGS 40
TRANSFORMATIONS II 42
LINEAR EQUATIONS II 45
LINEAR INEQUALITIES 47
GRAPHS OF FUNCTIONS 53
RATIO, RATE AND PROPORTION II 55
TRIGONOMETRY 58
CONTRIBUTORS 62

RUKUNEGARA

DECLARATION

OUR NATION, MALAYSIA, being dedicated
to achieving a greater unity of all her peoples;
to maintaining a democratic way of life;
to creating a just society in which the wealth of the nation shall be equitably shared;
to ensuring a liberal approach to her rich and diverse cultural traditions;
to building a progressive society which shall be oriented to modern science and technology;
WE, her peoples, pledge our united efforts to attain these ends guided by these principles:
BELIEF IN GOD
LOYALTY TO KING AND COUNTRY
UPHOLDING THE CONSTITUTION

RULE OF LAW

GOOD BEHAVIOUR AND MORALITY

NATIONAL PHILOSOPHY OF EDUCATION

Education in Malaysia is an on-going effort towards developing the potential of individuals in a holistic and integrated manner, so as to produce individuals who are intellectually, spiritually, emotionally and physically balanced and harmonious based on a firm belief in and devotion to God. Such an effort is designed to produce Malaysian citizens who are knowledgeable and competent, who possess high moral standards and who are responsible and capable of achieving a high level of personal well being as well as being able to contribute to the harmony and betterment of the family, society and the nation at large.

PREFACE

Science and technology plays a critical role in meeting Malaysia's aspiration to achieve developed nation status. Since mathematics is instrumental in developing scientific and technological knowledge, the provision of quality mathematics education from an early age in the education process is important.

The secondary school Mathematics curriculum as outlined in the syllabus has been designed to provide opportunities for pupils to acquire mathematical knowledge and skills and develop the higher order problem solving and decision making skills that they can apply in their everyday lives. But, more importantly, together with the other subjects in the secondary school curriculum, the mathematics curriculum seeks to inculcate noble values and love for the nation towards the final aim of developing the wholistic person who is capable of contributing to the harmony and prosperity of the nation and its people.

Beginning in 2003, science and mathematics will be taught in English following a phased implementation schedule which will be completed by 2008. Mathematics education in English makes use of ICT in its delivery. Studying mathematics in the medium
of English assisted by ICT will provide greater opportunities for pupils to enhance their knowledge and skills because they are able to source the various repositories of mathematical knowledge written in English whether in electronic or print forms. Pupils will be able to communicate mathematically in English not only in the immediate environment but also with pupils from other countries thus increasing their overall English proficiency and mathematical competence in the process.

The development of this Curriculum Specifications accompanying the syllabus is the work of many individuals expert in the field. To those who have contributed in one way or another to this effort, on behalf of the Ministry of Education, I would like to express my deepest gratitude and appreciation.

[^0]
CONTENTS

Page
RUKUNEGARA v
NATIONAL PHILOSOPHY OF EDUCATION vii
PREFACE ix
INTRODUCTION 1
LINES AND ANGLES II 10
POLYGONS II 12
CIRCLES II 15
STATISTICS II 19
INDICES 21
ALGEBRAIC EXPRESSIONS III 27
ALGEBRAIC FORMULAE 32
SOLID GEOMETRY III 34
SCALE DRAWINGS 40
TRANSFORMATIONS II 42
LINEAR EQUATIONS II 45
LINEAR INEQUALITIES 47
GRAPHS OF FUNCTIONS 53
RATIO, RATE AND PROPORTION II 55
TRIGONOMETRY 58
CONTRIBUTORS 62

RUKUNEGARA

DECLARATION

OUR NATION, MALAYSIA, being dedicated
to achieving a greater unity of all her peoples;
to maintaining a democratic way of life;
to creating a just society in which the wealth of the nation shall be equitably shared;
to ensuring a liberal approach to her rich and diverse cultural traditions;
to building a progressive society which shall be oriented to modern science and technology;
WE, her peoples, pledge our united efforts to attain these ends guided by these principles:
BELIEF IN GOD
LOYALTY TO KING AND COUNTRY
UPHOLDING THE CONSTITUTION

RULE OF LAW

GOOD BEHAVIOUR AND MORALITY

NATIONAL PHILOSOPHY OF EDUCATION

Education in Malaysia is an on-going effort towards developing the potential of individuals in a holistic and integrated manner, so as to produce individuals who are intellectually, spiritually, emotionally and physically balanced and harmonious based on a firm belief in and devotion to God. Such an effort is designed to produce Malaysian citizens who are knowledgeable and competent, who possess high moral standards and who are responsible and capable of achieving a high level of personal well being as well as being able to contribute to the harmony and betterment of the family, society and the nation at large.

PREFACE

Science and technology plays a critical role in meeting Malaysia's aspiration to achieve developed nation status. Since mathematics is instrumental in developing scientific and technological knowledge, the provision of quality mathematics education from an early age in the education process is important.

The secondary school Mathematics curriculum as outlined in the syllabus has been designed to provide opportunities for pupils to acquire mathematical knowledge and skills and develop the higher order problem solving and decision making skills that they can apply in their everyday lives. But, more importantly, together with the other subjects in the secondary school curriculum, the mathematics curriculum seeks to inculcate noble values and love for the nation towards the final aim of developing the wholistic person who is capable of contributing to the harmony and prosperity of the nation and its people.

Beginning in 2003, science and mathematics will be taught in English following a phased implementation schedule which will be completed by 2008. Mathematics education in English makes use of ICT in its delivery. Studying mathematics in the medium
of English assisted by ICT will provide greater opportunities for pupils to enhance their knowledge and skills because they are able to source the various repositories of mathematical knowledge written in English whether in electronic or print forms. Pupils will be able to communicate mathematically in English not only in the immediate environment but also with pupils from other countries thus increasing their overall English proficiency and mathematical competence in the process.

The development of this Curriculum Specifications accompanying the syllabus is the work of many individuals expert in the field. To those who have contributed in one way or another to this effort, on behalf of the Ministry of Education, I would like to express my deepest gratitude and appreciation.

[^1]LEARNING OBJECTIVES

Students will be taught to:
1.1 Understand and use properties of angles associated with transversal and parallel lines.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore the properties of angles associated with transversal using dynamic geometry software, geometry sets, acetate overlays or tracing paper.
- Discuss when alternate and corresponding angles are not equal.
- Discuss when all angles associated with transversals are equal and the implication on its converse.
LEARNING OUTCOMES

Students will be able to:

i. Identify:

a) transversals
b) corresponding angles
c) alternate angles
d) interior angles.
ii. Determine that for parallel lines:
a) corresponding angles are equal
b) alternate angles are equal
c) sum of interior angles is 180°.
iii. Find the values of:
a) corresponding angles
b) alternate angles
c) interior angles
associated with parallel lines.

VOCABULARY parallel lines
transversal
alternate angle
interior angle
associated
corresponding
angle
intersecting
lines
supplementary angle
acetate overlay

The interior angles on the same side of the transversal are supplementary.

LEARNING OBJECTIVES

Students will be taught to:

SUGGESTED TEACHING AND LEARNING ACTIVITIES
LEARNING OUTCOMES

Students will be able to:
iv. Determine if two given lines are parallel based on the properties of angles
associated with transversals.
v. Solve problems involving properties of angles associated with transversals.

POINTS TO NOTE
VOCABULARY

Students will be taught to:

Limit to transversal intersecting parallel lines.

LEARNING OBJECTIVES

Students will be taught to:
2.1 Understand the concepts of regular polygons.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use models of polygons and surroundings to identify regular polygons.
- Explore properties of polygons using rulers, compasses, protractors, grid papers, templates, geo-boards, flash cards and dynamic geometry software.
- Include examples of non-regular polygons developed through activities such as folding papers in the shape of polygons.
- Relate to applications in architecture.

Students will be able to:
i. Determine if a given polygon is a regular polygon.
ii. Find:
a) the axes of symmetry
b) the number of axes of symmetry
of a polygon.
iii. Sketch regular polygons.
iv. Draw regular polygons by dividing equally the angle at the centre.
v. Construct equilateral triangles, squares and regular hexagons.

POINTS TO NOTE	VOCABULARY
Limit to polygons with a maximum of 10 sides.	polygon regular polygon convex
	polygon axes of symmetry
	straightedges angle
	equilateral triangle
	square regular hexagon
Construct using	
straightedges and	
compasses.	
Emphasise on the	
accuracy of drawings.	

LEARNING OBJECTIVES

Students will be taught to:
2.2 Understand and use the knowledge of exterior and interior angles of polygons.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

Explore angles of different polygons through activities such as drawing, cutting and pasting, measuring angles and using dynamic geometry software.

- Investigate the number of triangles formed by dividing a polygon into several triangles by joining one chosen vertex of the polygon to the other vertices.

POINTS TO NOTE
VOCABULARY

Students will be able to:
i. Identify the interior angles and exterior angles of a polygon.
ii. Find the size of an exterior angle when the interior angle of a polygon is given and vice versa.
iii. Determine the sum of the interior angles of polygons.
iv. Determine the sum of the exterior angles of polygons.
interior angle exterior angle
complementary
angle

LEARNING OBJECTIVES

Students will be taught to:

SUGGESTED TEACHING AND LEARNING ACTIVITIES

LEARNING OUTCOMES

POINTS TO NOTE
VOCABULARY

- Include examples from everyday situations.

Students will be able to:
v. Find:
a) the size of an interior angle of a regular polygon given the number of sides.
b) the size of an exterior angle of a regular polygon given the number of sides.
c) the number of sides of a regular polygon given the size of the interior or exterior angle.
vi. Solve problems involving angles and sides of polygons.

LEARNING OBJECTIVES

Students will be taught to:
3.1 Understand and use properties of circles involving symmetry, chords and arcs.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore through activities such as tracing, folding, drawing and measuring using compasses, rulers, threads, protractor, filter papers and dynamic geometry software.

LEARNING OUTCOMES

POINTS TO NOTE
VOCABULARY

Students will be able to:
i. Identify a diameter of a circle as an axis of symmetry.
ii. Determine that:
a) a radius that is perpendicular to a chord divides the chord into two equal parts and vice versa.
b) perpendicular bisectors of two chords intersect at the centre.
c) two chords that are equal in length are equidistant from the centre and vice versa.
d) chords of the same length cut arcs of the same length.
iii. Solve problems involving symmetry, chords and arcs of circles.
diameter
axis of
symmetry
chord
perpendicular
bisector
intersect
equidistant
arc
symmetry
centre
radius
perpendicular

LEARNING OBJECTIVES

Students will be taught to:
3.2 Understand and use properties of angles in circles.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore properties of angles in a circle by drawing, cutting and pasting, and using dynamic geometry software.

Students will be able to:

i. Identify angles subtended by an arc at the centre and at the circumference of a circle.
ii. Determine that angles subtended at the circumference by the same arc are equal.
iii. Determine that angles subtended:
a) at the circumference
b) at the centre
by arcs of the same length are equal.
iv. Determine the relationship between angle at the centre and angle at the circumference subtended by an arc.
v. Determine the size of an angle subtended at the circumference in a semicircle.

Include reflex angles subtended at the centre.

Angle subtended by an arc is the same as angle subtended by the corresponding chord.
angle
subtended
semicircle
circumference
arc
chord
reflex angle
centre

LEARNING OBJECTIVES

Students will be taught to:
3.3 Understand and use the concepts of cyclic quadrilaterals.

SUGGESTED TEACHING AND

 LEARNING ACTIVITIES- Explore properties of cyclic quadrilaterals by drawing, cutting and pasting and using dynamic geometry software.

LEARNING OUTCOMES

POINTS TO NOTE

Students will be able to:
vi. Solve problems involving angles subtended at the centre and angles at the circumference of circles.
i. Identify cyclic quadrilaterals.
ii. Identify interior opposite angles of cyclic quadrilaterals.
iii. Determine the relationship between interior opposite angles of cyclic quadrilaterals.
iv. Identify exterior angles and the corresponding interior opposite angles of cyclic quadrilaterals.

cyclic

 quadrilateralinterior
opposite
angle
exterior angle

| LEARNING
 OBJECTIVES | SUGGESTED TEACHING AND
 LEARNING ACTIVITIES | LEARNING OUTCOMES | POINTS TO NOTE |
| :---: | :---: | :--- | :--- | :--- |
| Students will be taught to: | | Students will be able to: | |

LEARNING OBJECTIVES

Students will be taught to:
4.1 Represent and interpret data in pie charts to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use everyday examples from sources such as newspapers, magazines, reports and the Internet.
- Use calculators and computer software in constructing pie charts.

LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be able to:		
i. Obtain and interpret information from pie charts. ii. Construct pie charts to represent data. iii. Solve problems involving pie charts. iv. Determine suitable representation of data.	Relate the quantities of the data to the size of angles of the sectors. A complete pie chart should include: i) The title ii) Appropriate labels for the groups of data. Pie charts are mainly suitable for categorical data. Include pictograms, bar charts, line graphs and pie charts. Discuss that representation of data depends on the type of data.	sector pie chart angle suitable representation construct size of sector quantity data size of angle label title pictograms bar chart pie chart

LEARNING OBJECTIVES

Students will be taught to:
4.2 Understand and use the concepts of mode, median and mean to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use sets of data from everyday situations to evaluate and to forecast.
- Discuss appropriate measurement in different situations.
- Use calculators to calculate the mean for large sets of data.
- Discuss appropriate use of mode, median and mean in certain situations.
LEARNING OUTCOMES

Students will be able to:
i. Determine the mode of:
a) sets of data.
b) data given in frequency tables.
ii. Determine the mode and the respective frequency from pictographs, bar charts, line graphs and pie charts.
iii. Determine the median for sets of data.
iv. Determine the median of data in frequency tables.
v. Calculate the mean of:
a) sets of data
b) data in frequency tables
vi. Solve problems involving mode, median and mean.

POINTS TO NOTE

VOCABULARY

Involve data with more than one mode.
Limit to cases with discrete data only.
Emphasise that mode refers to the category or score and not to the frequency.

Include change in the number and value of data.
middle frequency table

	LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		- Explore laws of indices using repeated multiplication and calculators.	Students will be able to:		
5.2	Perform computations involving multiplication of numbers in index notation.		i. Verify $a^{m} \times a^{n}=d^{m+n}$ ii. Simplify multiplication of: a) numbers b) algebraic terms expressed in index notation with the same base. iii. Simplify multiplication of: a) numbers b) algebraic terms expressed in index notation with different bases.	Limit algebraic terms to one unknown.	multiplication simplify base algebraic term verify index notation indices law of indices unknown
5.3	Perform computation involving division of numbers in index notation.		i. Verify $a^{m} \div d^{m}=d^{m-n}$ ii. Simplify division of: a) numbers b) algebraic terms expressed in index notation with the same base.	Emphasise $a^{0}=1$.	

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	vocabulary
Students will be taught to:		Students will be able to:		
5.4 Perform computations involving raising numbers and algebraic terms in index notation to a power.		i. Derive $\left(a^{m}\right)^{n}=d^{m n}$. ii. Simplify: a) numbers b) algebraic terms expressed in index notation raised to a power. iii. Simplify multiplication and division of: a) numbers b) algebraic terms expressed in index notation with different bases raised to a power. iv. Perform combined operations involving multiplication, division, and raised to a power on: a) numbers b) algebraic terms.	$\left(a^{m}\right)^{n}=d^{m n}$ m and n are positive integers. Limit algebraic terms to one unknown. Emphasise: $\begin{aligned} & \left(a^{m} \times b^{n}\right)^{p}=a^{m p} \times b^{n p} \\ & \left(\frac{a^{m}}{b^{n}}\right)^{p}=\frac{a^{m p}}{b^{n p}} \end{aligned}$	raised to a power base

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
5.5 Perform computations involving negative indices.	- Explore using repeated multiplications and the law of indices.	i. Verify $\quad a^{-n}=\frac{1}{a^{n}}$. ii. State a^{-n} as $\frac{1}{a^{n}}$ and vice versa. iii. Perform combined operations of multiplication, division and raising to a power involving negative indices on: a) numbers b) algebraic terms.	n is a positive integer. Begin with $n=1$.	verify
5.6 Perform computations involving fractional indices.		i. Verify $a^{\frac{1}{n}}=\sqrt[n]{a}$. ii. State $a^{\frac{1}{n}}$ as $\sqrt[n]{a}$ and vice versa.	a and n are positive integers. Begin with $n=2$.	

LEARNING OBJECTIVES

Students will be taught to:
5.7 Perform computation involving laws of indices.

SUGGESTED TEACHING AND LEARNING ACTIVITIES
LEARNING OUTCOMES
i. Perform multiplication, division, raised to a power or combination of these operations on several numbers expressed in index notation.
ii. Perform combined operations of multiplication, division and raised to a power involving positive, negative and fractional indices.

LEARNING OBJECTIVES

Students will be taught to:
6.1 Understand and use the concept of expanding brackets.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Relate to concrete examples.
- Explore using computer software.

Students will be able to:
i. Expand single brackets.
ii. Expand two brackets.

VOCABULARY Begin with linear linear algebraic algebraic terms. terms
Limit to linear expressions.
Emphasise:
$(a \pm b)(a \pm b)$
$=(a \pm b)^{2}$

Include:
$(a+b)(a+b)$
$(a-b)(a-b)$
$(a+b)(a-b)$
$(a-b)(a+b)$

LEARNING OBJECTIVES

Students will be taught to:
6.2 Understand and use the concept of factorisation of algebraic expressions to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore using concrete materials and computer software.

| LEARNING OUTCOMES | | POINTS TO NOTE |
| :--- | :--- | :--- | VOCABULARY

6 LEARNING AREA:
 ALGEBRAIC EXPRESSIONS III

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
	- Explore using computer software.	iv. Factorise and simplify algebraic fractions.	Begin with one-term expressions for the numerator and denominator. Limit to factorisation involving common factors and difference of two squares.	numerator denominator algebraic fraction factorisation

LEARNING OBJECTIVES

Students will be taught to:
6.3 Perform addition and subtraction on algebraic fractions.

SUGGESTED TEACHING AND

 LEARNING ACTIVITIES- Explore using computer software.
- Relate to real-life situations.
LEARNING OUTCOMES

Students will be able to:
i. Add or subtract two algebraic fractions with the same denominator.
ii. Add or subtract two algebraic fractions with one denominator as a multiple of the other denominator.
iii. Add or subtract two algebraic fractions with denominators:
a) without any common factor
b) with a common factor.

VOCABULARY

The concept of LCM may be used.

Limit denominators to one algebraic term.
common factor
lowest common multiple (LCM) multiple denominator

POINTS TO NOTE

LEARNING OBJECTIVES

Students will be taught to:

6.4 Perform

multiplication and division on
algebraic fractions.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore using computer software.

Students will be able to:
i. Multiply two algebraic fractions involving denominator with:
a) one term
b) two terms.
ii. Divide two algebraic fractions involving denominator with:
a) one term
b) two terms
iii. Perform multiplication and division of two algebraic fractions using factorisation involving common factors and the different of two squares.

POINTS TO NOTE
VOCABULARY Begin multiplication and division without simplification followed by multiplication and division with simplification.

LEARNING OBJECTIVES

Students will be taught to:
7.1 Understand the concepts of variables and constants.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use examples of everyday situations to explain variables and constants.

LEARNING OUTCOMES

Students will be able to:
i. Determine if a quantity in a given situation is a variable or a constant.
ii. Determine the variable in a given situation and represent it with a letter symbol.
iii. Determine the possible values of a variable in a given situation.

POINTS TO NOTE	VOCABULARY
	quantity variable constant possible value formula
	value letter symbol formulae
Variables include	
integers, fractions and	
decimals.	lor

LEARNING OBJECTIVES

Students will be taught to:
7.2 Understand the concepts of formulae to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

LEARNING OUTCOMES

Students will be able to:
i. Write a formula based on a given:
a) statement
b) situation.
ii. Identify the subject of a given formula.
iii. Express a specified variable as the subject of a formula involving:
a) one of the basic operations: $+,-, x, \div$
b) powers or roots
c) combination of the basic operations and powers or roots.
iv. Find the value of a variable when it is:
a) the subject of the formula
b) not the subject of the formula.
v. Solve problems involving formulae.

POINTS TO NOTE
VOCABULARY

Symbols representing a quantity in a formula must be clearly stated.
subject of a formula statement
power
roots
formulae

Involve scientific formulae.

SOLID GEOMETRY III

Form 3

```
LEARNING OBJECTIVES
```

Students will be taught to:
8.1 Understand and use the concepts of volumes of right prisms and right circular cylinders to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use concrete models to derive the formulae.
- Relate the volume of right prisms to right circular cylinders.

| LEARNING OUTCOMES | | | POINTS TO NOTE |
| :--- | :--- | :--- | :--- | vOCABULARY

LEARNING OBJECTIVES

SUGGESTED TEACHING AND LEARNING ACTIVITIES

Students will be taught to:

LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be able to:		liquid
ix. Calculate volume of liquid in a		
container.	Limit the shape of containers to right circular cylinders and right prisms.	container
X. Solve problems involving volumes of prisms and cylinders.		

LEARNING OBJECTIVES

Students will be taught to:
8.2 Understand and use the concept of volumes of right pyramids and right circular cones to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use concrete models to derive the formula.
- Relate volumes of pyramids to prisms and volumes of cones to cylinders.
LEARNING OUTCOMES

Students will be able to:
i. Derive the formula for the volume of:
a) pyramids
b) cones.
ii. Calculate the volume of pyramids in $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ and m^{3}, given the height and:
a) area of the base
b) dimensions of base.
iii. Calculate the height of a pyramid given the volume and the dimension of the base.
iv. Calculate the area of the base of a pyramid given the volume and the height.

POINTS TO NOTE

vOCABULARY

Include bases of different types of polygons.
pyramid
cone
volume
base
height
dimension

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES		LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:			
		v.	Calculate the volume of a cone in $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ and m^{3}, given the height and radius of the base.		height dimension
		vi.	Calculate the height of a cone, given the volume and the radius of the base.		
		vii.	Calculate the radius of the base of a cone given the volume and the height.		
			Solve problems involving volumes of pyramids and cones.		

LEARNING OBJECTIVES

Students will be taught to:
8.3 Understand and use the concept of volumes of sphere to solve problems.
8.4 Apply the concept of volumes to solve problems involving composite solids.

SUGGESTED TEACHING AND LEARNING ACTIVITIES
LEARNING OUTCOMES

Students will be able to:
i. Calculate the volume of a sphere given the radius of the sphere.
ii. Calculate the radius of a sphere given the volume of the sphere.
iii. Solve problems involving volumes of spheres.
i. Calculate the volume of a composite solid.
ii. Solve problems involving volumes of composite solids.

- Use examples from real-life situations.
- Use concrete models to form composite solids.

VOCABULARY
sphere
hemisphere
solid
composite
solid
combination
volume
radius

POINTS TO NOTE

Include hemisphere

Composite solids are combinations of geometric solids.

\square

LEARNING OBJECTIVES

Students will be taught to:
9.1 Understand the concepts of scale drawings.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore scale drawings using dynamic geometry software, grid papers, geo-boards or graph papers.

LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be able to:		
i. Sketch shapes:		
a) of the same size as the		
object	Limit objects to two- dimensional geometric shapes.	sketch
b) smaller than the object c) larger than the object using grid papers.		objects

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
	- Relate to maps, graphics and architectural drawings.	iv. Redraw shapes on grids of different sizes. v. Solve problems involving scale drawings.	Emphasise that grids should be drawn on the original shapes.	redraw

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
10.1 Understand and use the concepts of similarity.	- Involve examples from everyday situations.	i. Identify if given shapes are similar. ii. Calculate the lengths of unknown sides of two similar shapes.	Emphasise that for a triangle, if the corresponding angles are equal, then the corresponding sides are proportional.	shape similar side angle proportion centre of enlargement
10.2 Understand and use the concepts of enlargement.	- Explore the concepts of enlargement using grid papers, concrete materials, drawings, geo-boards and dynamic geometry software. - Relate enlargement to similarity of shapes.	i. Identify an enlargement. ii. Find the scale factor, given the object and its image of an enlargement when: a) scale factor >0 b) scale factor <0.	Emphasise the case of reduction. Emphasise the case when scale factor $= \pm 1$	transformation enlargement scale factor object image invariant
		iii. Determine the centre of enlargement, given the object and its image.	Emphasise that the centre of enlargement is an invariant point.	reduction size orientation similarity

10

LEARNING OBJECTIVES

Students will be taught to:

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use grid papers and dynamic geometry software to explore the relationship between the area of the image and its object.

LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be able to:		
vii. Determine the relationship between the area of the image and its object.		area
viii. Calculate the: a) area of image b) area of object c) scale factor of an enlargement.	Include negative scale factors.	
ix. Solve problems involving enlargement.		

LEARNING OBJECTIVES

SUGGESTED TEACHING AND LEARNING ACTIVITIES

Students will be taught to:
11.1 Understand and use the concepts of linear equations in two variables.

- Derive linear equations in two variables relating to real-life situations.
- Explore using graphic calculators, dynamic geometry software and spreadsheets to solve linear equations and simultaneous linear equations.

LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be able to:		
i.Determine if an equation is a linear equation in two variables.		equation
ii.Write linear equations in two variables from given information.	linear equation lii.Determine the value of a variable given the other variables. iv.Determine the possible solutions for a linear equation in two variables.	possible solution

17 LEARNING AREA:
 LINEAR EQUATIONS II

LEARNING OBJECTIVES

Students will be taught to:
11.2 Understand and use the concepts of two
simultaneous linear equations in two variables to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use trial and improvement method.
- Use examples from real-life situations.

LEARNING OUTCOMES		POINTS TO NOTE	VOCABULARY
Students will be able to:			
i.Determine if two given equations are simultaneous linear equations. Solve two simultaneous linear equations in two variables by a) substitution b) elimination	Include letter symbols other than x and y to represent variables.	linear equation variable simultaneous linear	
ii.		equation solution substitution elimination	
iii.Solve problems involving two simultaneous linear equations in two variables.			

12

LEARNING OBJECTIVES

Students will be taught to:
12.1 Understand and use the concepts of inequalities.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use everyday situations to illustrate the symbols and the use of " $>$ ", " < ", " \geq " and " \leq ".

| LEARNING OUTCOMES | | | POINTS TO NOTE |
| :--- | :--- | :--- | :--- | VOCABULARY

12

LEARNING OBJECTIVES

Students will be taught to:

12.2 Understand and

 use theconcepts of
linear
inequalities in one unknown.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

Students will be able to:
i. Determine if a given relationship is a linear inequality.
ii. Determine the possible solutions for a given linear inequality in one unknown:
a) $x>h$;
b) $x<h$;
c) $x \geq h$;
d) $x \leq h$.
iii. Represent a linear inequality:
a) $x>h$;
b) $x<h$;
c) $x \geq h$;
d) $x \leq h$.
on a number line and vice versa.

VOCABULARY
relationship
linear
unknown
number line
h is a constant, x is an integer.

POINTS TO NOTE

12

LEARNING OBJECTIVES

Students will be taught to:

12.3 Perform computations

 involvingaddition, subtraction, multiplication and division on
linear
inequalities.

SUGGESTED TEACHING AND

 LEARNING ACTIVITIES- Involve examples from everyday situations.

Students will be able to:
iv. Construct linear inequalities using symbols:
a) " > " or " < "
b) " \geq " or " \leq "
from given information.
i. State a new inequality for a given inequality when a number is:
a) added to
b) subtracted from
both sides of the inequalities.
ii. State a new inequality for a given inequality when both sides of the inequality are:
a) multiplied by a number
b) divided by a number.

VOCABULARY

Emphasise that the condition of inequality is unchanged.

Emphasise that when we multiply or divide both sides of an inequality by the same negative number, the inequality is reversed.

12 tamanasa
 LINEAR INEQUALITIES

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
		iii. Construct inequalities a) $x+k>m+k$ b) $x-k>m-k$ c) $k x>k m$ d) $\frac{x}{k}>\frac{m}{k}$ from given information.	Information given from real-life situations. Include also $<, \geq$ and \leq.	relation equivalent adding subtracting simplest collect isolate solve

12 LEARNING AREA:
 LINEAR INEQUALITIES

ILEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
12.4 Perform computations to solve inequalities in one variable.	- Explore using dynamic geometry software and graphic calculators.	i. Solve a linear inequality by: a) adding a number b) subtracting a number on both sides of the inequality. ii. Solve a linear inequality by a) multiplying a number b) dividing a number on both sides of the inequality. iii. Solve linear inequalities in one variable using a combination of operations.	Emphasise that for a solution, the variable is written on the left side of the inequalities.	add subtract multiply divide

12

LEARNING OBJECTIVES

Students will be taught to:
12.5 Understand the concepts of simultaneous linear inequalities in one variable.

SUGGESTED TEACHING AND LEARNING ACTIVITIES
1

POINTS TO NOTE

LEARNING OUTCOMES

Students will be able to:
i. Represent the common values of two simultaneous linear inequalities on a number line.
ii. Determine the equivalent inequalities for two given linear inequalities.
iii. Solve two simultaneous linear inequalities.

Emphasise the meaning of inequalities such as:
i. $a<x<b$
ii. $a \leq x \leq b$
iii. $a \leq x<b$
iv. $a<x \leq b$

Emphasise that forms such as:
i. $\quad a>x<b$
ii. $a<x \geq b$
iii. $a<x>b$
are not accepted.

VOCABULARY
determine common value simultaneous
combining
linear
inequality
number line
equivalent
路

13
 LEARNING AREA:
 GRAPHS OF FUNCTIONS

LEARNING OBJECTIVES

Students will be taught to:
13.1 Understand and use the concepts of functions.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore using "function machines".

Students will be able to:
i. State the relationship between

Involve functions such
as:
i. $y=2 x+3$
ii. $p=3 q^{2}+4 q-5$
iii. $A=B^{3}$
iv. $W=\frac{1}{Z}$

function

relationship variable dependent variable independent variable
ordered pairs
iii. Calculate the value of the dependent variable, given the value of the independent variable.

13 LEARNING AREA:
 GRAPHS OF FUNCTIONS

LEARNING OBJECTIVES

Students will be taught to:

13.2 Draw and use graphs of functions.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

RATIO, RATE AND PROPORTION II

LEARNING OBJECTIVES

Students will be taught to:
14.1 Understand the concepts of rates and perform computations involving rate.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use real-life situations that involve rate.

Students will be able to:
i. Determine the rate involved in given situations and identify the two quantities involved.
ii. Calculate the rate given two different quantities.
iii. Calculate a certain quantity given the rate and the other quantity.
iv. Convert rates from one unit of measurement to another.
v. Solve problems involving rate.

14

LEARNING OBJECTIVES

Students will be taught to:

14.2 Understand and use the concept of speed.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use examples from everyday situations.
LEARNING OUTCOMES
Students will be able to:

i. \begin{tabular}{l}
Identify the two quantities

involved in speed.

ii.

Calculate and interpret speed.

iii. | Calculate: |
| :--- |
| a) the distance, given the |
| speed and the time |

b) the time, given the speed

and the distance.
\end{tabular}

iv. Convert speed from one unit
of measurement to another.

v. | Differentiate between uniform |
| :--- |
| speed and non-uniform |
| speed. |

i

Students will be able to:
i. Identify the two quantities involved in speed.
ii. Calculate and interpret speed.
iii. Calculate:
a) the distance, given the speed and the time
b) the time, given the speed and the distance.
iv. Convert speed from one unit

Include the use of graphs.

Moral values related to traffic rules should be incorporated.
speed
distance
time
uniform
non-uniform
differentiate

LEARNING AREA:

RATIO, RATE AND PROPORTION II

LEARNING OBJECTIVES

Students will be taught to:
14.3 Understand and use the concepts of average speed.
14.4 Understand and use the concepts of acceleration.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use examples from daily situations.
- Discuss the difference between average speed and mean speed.

LEARNING AREA:
TRIGONOMETRY

LEARNING OBJECTIVES

Students will be taught to:
15.1 Understand and use tangent of an acute angle in a right-angled triangle.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Use right-angled triangles with real measurements and develop through activities.
- Discuss the ratio of the opposite side to the adjacent side when the angle approaches 90°.
- Explore tangent of a given angle when:
a) The size of the triangle varies proportionally
b) The size of angle varies.

Students will be able to:
i. Identify the:
a) hypotenuse
b) the opposite side and the adjacent side with respect to one of the acute angles.
ii. Determine the tangent of an angle.
iii. Calculate the tangent of an angle given the lengths of sides of the triangle.
iv. Calculate the lengths of sides of a triangle given the value of tangent and the length of another side.

POINTS TO NOTE

VOCABULARY

Use only right-angled triangle.

Tangent θ can be written as $\tan \theta$.

Emphasise that tangent is a ratio.
Limit to opposite and adjacent sides.

Include cases that require the use of Pythagoras' Theorem.
right-angled triangle
angle
hypotenuse opposite side adjacent side
ratio
tangent
value
length
size

LEARNING OBJECTIVES

Students will be taught to:
15.2 Understand and use sine of an acute angle in a right-angled triangle.
15.3 Understand and use cosine of an acute angle in a right-angled triangle.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

- Explore sine of a given angle when:
a) The size of the triangle varies proportionally.
b) The size of the angle varies.
- Explore cosine of a given angle when:
a) The size of the triangle varies proportionally.
b) The size of the angle varies.
LEARNING OUTCOMES

Students will be able to:
i. Determine the sine of an angle.
ii. Calculate the sine of an angle given the lengths of sides of the triangle.
iii. Calculate the lengths of sides of a triangle given the value of sine and the length of another side.
i. Determine the cosine of an angle.
ii. Calculate the cosine of an angle given the lengths of sides of the triangle.
iii. Calculate the lengths of sides of a triangle given the value of cosine and the length of another side.

LEARNING AREA:
TRIGONOMETRY

LEARNING OBJECTIVES

Students will be taught to:
15.4 Use the values of tangent, sine and cosine to solve problems.

SUGGESTED TEACHING AND LEARNING ACTIVITIES

LEARNING OUTCOMES

Students will be able to:
i. Calculate the values of other trigonometric ratios given the value of a trigonometric ratio.
ii. Convert the measurement of angles from:
a) degrees to degrees and minutes.
b) degrees and minutes to degrees.
iii. Find the value of:
a) tangent
b) sine
c) cosine
of $30^{\circ}, 45^{\circ}$ and 60° without using scientific calculator.
iv. Find the value of:
a) tangent
b) sine
c) cosine
using scientific calculator.

Include angles expressed in:
i) degrees
ii) degrees and minutes
degree
minute
tangent
sine
cosine

POINTS TO NOTE

Form 3

LEARNING OBJECTIVES	SUGGESTED TEACHING AND LEARNING ACTIVITIES	LEARNING OUTCOMES	POINTS TO NOTE	VOCABULARY
Students will be taught to:		Students will be able to:		
		v. Find the angles given the values of: a) tangent b) sine c) cosine using scientific calculators. vi. Solve problems involving trigonometric ratios.		angle degree minute tangent sine cosine

CONTRIBUTORS

Advisor	Dr. Sharifah Maimunah Syed Zin	
		Curriculum Development Centre
	Dr. Rohani Abdul Hamid	Deputy Director
		Curriculum Development Centre
Editorial Advisors	Ahmad Hozi H.A. Rahman	Principal Assistant Director
		(Science and Mathematics Department)
		Curriculum Development Centre
	Rusnani Mohd Sirin	Assistant Director
		(Head of Mathematics Unit)
		Curriculum Development Centre
	S. Sivagnanachelvi	Assistant Director
		(Head of English Language Unit)
		Curriculum Development Centre
Editor	Rosita Mat Zain	Assistant Director
		Curriculum Development Centre

Rusnani Mohd Sirin

Curriculum Development Centre

Rohana Ismail

Curriculum Development Centre

Lau Choi Fong
SMK Hulu Kelang
Hulu Kelang, Selangor
Kumaravalu a/l Ramasamy
Maktab Perguruan Tengku Ampuan
Afzan, Kuala Lipis
Cik Bibi Kismete Kabul Khan
SMK Dr. Megat Khas
Ipoh, Perak

Azizan Yeop Zaharie

Maktab Perguruan Persekutuan Pulau Pinang

Lee Soon Kuan
 SMK Tanah Merah
 Pendang, Kedah

WRITERS

Abdul Wahab Ibrahim	
Curriculum Development Centre	Rosita Mat Zain Curriculum Development Centre
Susilawati Ehsan	Dr. Pumadevi a/p Sivasubramaniam Maktab Perguruan Raja Melewar, Curriculum Development Centre
Seremban, Negeri Sembilan	

LAYOUT AND ILLUSTRATION

Rosita Mat Zain

Curriculum Development Centre

Mohd Razif Hashim
Curriculum Development Centre

[^0]: (Dr. SHARIFAH MAIMUNAH SYED ZIN) Director
 Curriculum Development Centre
 Ministry of Education Malaysia

[^1]: (Dr. SHARIFAH MAIMUNAH SYED ZIN) Director
 Curriculum Development Centre
 Ministry of Education Malaysia

